
FunFair Technology Roadmap and Discussion

June 6, 2017, v0.97

Jeremy Longley and Oliver Hopton

v0.9 - DRAFT - Copyright 2017, FunFair 1

Contents

1 Introduction 3

2 Disclaimer and Notice 3

3 Design Goals 3
3.1 Funness . 3

4 Random Number Generation 3

5 Our Solution: Fate Channels 3

6 Development History 4
6.1 FunFair Slot v0.1 . 4
6.2 Slot v0.1 Enhancements . 4
6.3 Problems with v0.1 . 4
6.4 Design Goals for v0.2 . 4
6.5 Fate Channels v0.2 . 4

7 Fate Channels v2 5

8 Fate Channels v3: Multi-State Games 6

9 Fate Channels v4: Fully Peer-to-Peer 6

10 A Note on Threshold Cryptography 6

11 More Information 6

2

5 OUR SOLUTION: FATE CHANNELS

1 Introduction

The FunFair Technology Platform is an ambitious project
designed to deliver next generation gaming anywhere in the
world.This document discusses design goals, implementa-
tions and the upcoming roadmap.

For a full overview of the FunFair Platform, refer to our whitepa-
per at https://funfair.io/.

2 Disclaimer and Notice

Portions of the technology development discussed here may
be protected by patents pending in the US, European Union,
Asia or other markets worldwide. All information here that is
forward looking is speculative in nature and may change in re-
sponse to numerous outside forces, including technology, reg-
ulatory and market moves.

3 Design Goals

Our core mission is to build a platform and protocol for the
next generation of responsive online gaming entertainment. All
games on the platform must meet our strict criteria:

Provably Fair They should rely on the blockchain to verify
gameplay.

Bankless They should rely on the blockchain to store transac-
tions.

Fast There shouild be zero latency between the user pressing
any UI button and seeing the result.

Flexible The games should support any type of player decision
during a game session, including:

• Varying the size of bets from game to game
• Playing immediately with winnings
• Adding funds mid-session

3.1 Funness

We don’t want just simple, boring “pick a number” games.
These are endemic to blockchain gaming, and they are just
not fun. We are fun. The gaming industry has spent hundreds
of years refining fun games for their customers – we think it’s
wrong to ignore those lessons. Therefore, the platform must

• Support multi-state games like Blackjack, with the abil-
ity to split, double and play multiple seats

• Support games where state persists between individual
rounds like Craps

4 Random Number Generation

At the core of any casino game is a random number gener-
ator (RNG). All software-based RNGs are effectively pseudo-
random number generators (PRNGs).

PRNGs on blockchains have many problems.

Per Transaction Some blockchain games generate random-
ness one play at a time, a slow and costly approach that isn’t
viable for players or operators. Additionally, these typically re-
quire a daily “commit and reveal” of secret information. The
gamer can verify after-the-fact that the operator did not cheat,
but must trust during the game. Old-style games that use this
setup like SatoshiDice may cost up to $1-5 to play before any
bet is staked and take minutes to hours per bet depending on
block time how full the blocks might be.

Oracles Other blockchain-based online games use oracles
to generate randomness. These are also slow, limited to
blockchain confirmation speeds, often requiring multiple
blocks to be mined before results are available, and add
difficult incentivization questions about the operators, their
employees and servers.

Block Hashes The worst use block hashes for random num-
ber creation; slow and fundamentally vulnerable to attack by
miners, by their very design.

None of these technologies can create compelling games in
2017.

5 Our Solution: Fate Channels

We have invented a provably fair system using state channels
containing pre-committed partial RNG seeds provided sepa-
rately by the player and the operator. These partial seeds are
comitted to the blockchain at the start of the gaming session.

State channels work by allowing participants to engage in a
rapid back-and-forth countersigning of updated “claims” on
an escrowed amount of funds. The Bitcoin Lightning protocol
was the first to popularize the idea. On EthereumVM-capable
blockchains, State channels are very simple to create and im-
plement – a smart contract holds escrowed funds, and then
releases when the state channel participants request it.

During gaming, we create instead a “Fate Channel”; a State
channel with the added ability to verify a progressive reveal
scheme by both parties, advancing a deterministic (“fated”) but
unpredictable sequence of random numbers.

Details of our Fate Channel implementation will follow our to-
ken sale; for now we feel it gives us and our token holders a
competitive advantage to keep implementation details private
a little bit longer.

v0.9 - DRAFT - Copyright 2017, FunFair 3

6 DEVELOPMENT HISTORY

6 Development History

We started with a relatively complex Slot game: 30 win-lines,
wild cards, scatter symbols and a bonus mode featuring free
spins.

Many Slot implementations online determine the position of the
reels by first deciding on an outcome, then animating the reels
to an appropriate position, but this approach restricts the com-
plexity of future games. It’s also not the way slot machines
work in real life, so this might be considered a ‘fake slot’, more
akin to a Dice game with slot graphics overlaid on top.

A ‘pick a number then animate’ solution is a technology dead
end. More complex games like Blackjack and Roulette do not
easily translate to this method, so we implemented it the ‘hard
way’ in preparation.

6.1 FunFair Slot v0.1

We encoded the rules of the Slot machine on the blockchain.
Initially, we built a system in which a smart contract picks a
future block to be used as the seed for a random number gen-
erator (RNG). When the appropriate block is mined, the con-
tract uses the hash of the previously mined block, salted ap-
propriately to generate entropy and then walks through a state
machine, encoded into the smart contract. This state machine
determines the position of each of the reels of the Slot machine.

As discussed, this is a bad method to get random numbers.
This method has risks for operators if miners are gaming – min-
ers can have incentive to throw away a mined block if it con-
tains a loss, depending on a number of extrinsic and intrinsic
factors.

6.2 Slot v0.1 Enhancements

We then extended the basic play in two ways:

Multi-Spin The player can “insert” funds formore than one spin
– the entropy generated can be used to determine a sequence
of spins rather than just one at a time. This is the core of our
first innovation that yields instant gaming.

Free SpinsOnce we were able to create multiple spins through
the initial seed, we extended the capabilities of the machine to
add spins, still seeded off the same random number.

This system was built and works as intended. We built a stylish
web-based front end, including symbol animations and effects
to give an indication of the final quality of product we can build.
See pictures and links to videos at https://funfair.io/whitepaper.

6.3 Problems with v0.1

The initial project was a success and we proved that it was
possible to build a high quality, fun, instantly responsive Slot
machine on the blockchain.

This system failed our core requirements. It was exploitable by
miners, did not allow mid-game decisions and was gas cost
prohibitive.

Although we did come up with a set of enhancements that pre-
vented miner cheating (by blinding knowledge of the RNG at
the moment of mining with a commit/reveal scheme but this
method was abandoned in favour of the superior solution.)

6.4 Design Goals for v0.2

The PRNG scheme in v0.1 did not support our goal of provably
fun, fast, fair and flexible games. Looking for an alternate solu-
tion, we incorporated three existing areas of research from the
blockchain and gaming communities.

State Channels State Channels allow micro-transactions to
be handled between parties directly, off-chain; funds are com-
mitted and locked in a smart contract in advance. Then trans-
actions occur between the parties, progressively signed by all.
The final state is committed back to the chain in a way that
proves all parties agree on the outcome.

Provably Fair Here the basic concept is that some entropy is
committed to the blockchain in advance, but encrypted. Once
the gameplay has occurred, this entropy can be revealed to
have been the source of the RNG used for gaming - which, in
combination with encoding the rules of the game in a smart
contract, can be used to prove the fairness of the game

Reverse HashChains To create a hash chain, choose a secure
initial seed, hash it, hash the hash, repeat many times and re-
veal the last hash. At the time of reveal you have created a
series of secret random numbers that can be revealed sequen-
tially, one at a time and backwards. The revealer can’t cheat or
change their mind without breaking the hash algorithm – they
must reveal the prior number in sequence, and this number can
be verified easily as the correct ‘prior’ secret number.

6.5 Fate Channels v0.2

To power the random number generation behind FunFair’s Slot
machine – and ultimately behind all games on our platform–
we invented a random number generator that operates off-
blockchain. It exists as a state channel for the duration of the
gaming session and supports realtime messaging between
the FunFair client and server. We call these channels “Fate
Channels.”

v0.9 - DRAFT - Copyright 2017, FunFair 4

7 FATE CHANNELS V2

6.5.1 The Channel Setup

Fate Channels support communication throughout a gaming
session between the Player (client) and the Casino (operator).
They Provide a fast low-cost method for random number gener-
ation, starting gaming sessions, ending them and settling with
smart contracts on the blockchain.

For each game, a smart contract API call is issued encapsu-
lating the rules of the game. The overarching Fate Channels
contract primarily does two things: starts a gaming session,
and settles, (or ends) one.

6.5.2 The Client

The Client is a web-based, Javascript and HTML5/WebGL ap-
plication that can communicate with the blockchain and the
Server. In the future clients could be native applications on mo-
bile, but for now they can work directly inside a mobile browser,
giving access to the widest possible range of customers.

6.5.3 The Server

The Server is very similar to the Client but headless, with no
user interaction.

After the Player initiates a gaming session, both the Client and
Server create reverse hash chains. The Fate Channel contract
verifies all interactions from both players and creates a session
on the blockchain, locking funds and posting an Event to the
blockchain.

6.5.4 The Protocol

As gaming progresses, the Client and Server trade messages,
signed by the sender.

If the state of the session has advanced in a given message,
the new state is signed and the previous state (already signed
by the other party) is co-signed. For each outcome in a gaming
session, the Server creates the RNG by pulling the next hash
from its Reverse Hash Chain, combining it with the next client
hash (provided by the client), and taking the hash of that.

It then runs the game logic using this RNG – determining an
action in the gaming statemachine. Meanwhile, the Client uses
the same hashes to generate the RNG in the same way the
Server did. It uses its own implementation of the game logic to
verify winnings and other game outcomes match those of the
Server.

To end a session, the Player presses a cash out button. The
client signs the most recently traded state, the server co-signs

and calls the Fate Channel contract with an “End Session”mes-
sage. The contract extensively verifies all relevant data. If all is
good, the contract pays out the final balance and the session
is ended.

6.5.5 On-Chain Verification

This initial implementation allows for secure, deterministic, fair
gameplay. However, we would also like to validate this on-
chain. In order to do this, we need two additional contract
methods:

Chain Verification To verify each of the the Reverse Hash
Chains created by the Client and Server, the last hash used
is posted to the chain - the Fate Channel can then hash this
the correct number of times and recreate the committed ‘final
hash’ of the chain.

Game Verification To verify an individual game, we imple-
ment the game state machine in a separate contract on the
blockchain, one per game type. This can be a constant
function, taking the initial seeds, the game and the game
output, and returning true or false. Because constant
functions do not modify the blockchain, they are free to call
and execute for all participants.

7 Fate Channels v2

The next round of development will make two improvements.

Ephemeral Channel Address In Fate Channels v1, the Client
generates an Epheremeral key to sign channel messages.
Clients may forget their address signing key if they wait too
long or don’t wish to re-sign a transaction from their web3
client to claim funds. Clients can leave because interface
requests add friction or just because they become distracted
and close a browser window. The client signing key could be
stored encrypted in the Fate Channel contract alongside the
session. We believe this could be extended to recover partial
sessions as well.

Unified State Machine Fate Channels v1 store logic in three
places: the smart contract, the Client and the Server, and at
times these are implemented in different languages – Solidity,
Javascript and (currently) C#. We are exploring how to unify
these. Possibilities include a standardized state machine struc-
ture or instrumenting Client and Server to use only Ethereum
blockchain constant functions.

v0.9 - DRAFT - Copyright 2017, FunFair 5

11 MORE INFORMATION

8 Fate Channels v3: Multi-State Games

The FunFair Slot machine is a proof that Fate Channels can
power a faster, fairer game that doesn’t rack up transaction
costs or spam the blockchain. We are the only experienced
gaming company in the world to get this far. We will go further.
Slot machines, dice games and Roulette are “fire and forget”:
Once a player spins the wheel or rolls the dice, there is nothing
they can do mid-play to change their bet or affect the outcome.

“Multi-state” games are more popular globally. When players
can affect the game in some way, perhaps by changing their
wager (Blackjack), or basing a new wager on results of a prior
one (Craps), they are more engaged.

To support multi-state games like Blackjack, FunFair will ex-
tend the Fate Channel protocol. Fate Channels v3, incorporat-
ing these changes are set to release Q3 2017.

9 Fate Channels v4: Fully Peer-to-Peer

Fate Channels imagine a Server and a Client. FunFair intends
to allow operators to run a Server directly as part of the sim-
ple two click process. This ability to allow anyone to launch
and operate their own gaming environment is a key part of our
value proposition: making it easy for long tail operators, private
groups, celebrities and others to operate quality games is what
we do.

We would like to remove the Server component completely
from the Fate Channel specification, and believe we have a
way to do that. If we are successful, then these operators will
get full benefits from the distributed and decentralized nature
of the blockchain.

This is a technically challenging innovation, andwe’re only 95%
sure we can do it, but early indications are good, and the ben-
efit to all FunFair stakeholders is immense.

We are currently slating Q4 2017 for full P2P play with no
servers at all – all while meeting our key requirements that
each game be fun, fast and fair.

10 A Note on Threshold Cryptography

Threshold Cryptography - for instance (BLS), popularized by
String Labs for their Dfinity project, holds out the promise of a
truly secure random number generated by a group of partici-
pants, at least one per block. These cryptographic primitives
are supported in Ethereum’s Metropolis release (and also add
support for zk-Snarks) and other privacy primatives.

We may update our mechanisms to incorporate this technol-
ogy, but we will still rely on Fate Channels for the “instant” part

of the gaming – gas costs will be prohibitive for using these
RNGs more often than at the beginning and end of channel
creation.

We are excited by the pace of development of the Ethereum
infrastructure and are continually evaluating new features and
research that could enhance our offering further.

11 More Information

For more technical information, check our website at
https://funfair.io or email us on info@funfair.io

v0.9 - DRAFT - Copyright 2017, FunFair 6

	Introduction
	Disclaimer and Notice
	Design Goals
	Funness

	Random Number Generation
	Our Solution: Fate Channels
	Development History
	FunFair Slot v0.1
	Slot v0.1 Enhancements
	Problems with v0.1
	Design Goals for v0.2
	Fate Channels v0.2

	Fate Channels v2
	Fate Channels v3: Multi-State Games
	Fate Channels v4: Fully Peer-to-Peer
	A Note on Threshold Cryptography
	More Information

